Speaker and gender normalization for continuous-density hidden Markov models

نویسندگان

  • Alex Acero
  • Xuedong Huang
چکیده

In this paper we describe a speaker-cluster normalization algorithm that we applied to both gendernormalization and speaker-normalization. To achieve parameter sharing the acoustic space is partitioned into classes. A maximum likelihood approach has been proposed under which the delta between the distribution mean and its corresponding acoustic class is mostly speaker-independent, whereas the means of the acoustic classes are mostly speaker-dependent. When applied to gender-normalization, the error rate reduction approaches that of a gender-dependent system but with half the number of parameters. For a speaker-normalized system, a 30% decrease in error rate was obtained in a batch recognition experiment in a context-dependent continuous-density HMM system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connectionist Speaker Normalization and Its Applications to Speech Recognition

Speaker normalization may have a significant impact on both speakeradaptive and speaker-independent speech recognition. In this paper, a codeworddependent neural network (CDNN) is presented for speaker normalization. The network is used as a nonlinear mapping function to transform speech data between two speakers. The mapping function is characterized by two important properties. First, the ass...

متن کامل

Transition-oriented hidden Markov models for speaker verification

In this article, we present a novel mechanism by which more precise voiceprints can be constructed in a typical text-dependent speaker veri cation system based on a continuous density hidden Markov model (HMM). Typical voiceprints (speaker-dependent HMMs) are rst trained using a subscriber's enrollment data. The resulting models are then restructured to permit a modeling of sub-state behavior. ...

متن کامل

Multiple codebook semi-continuous hidden Markov models for speaker-independent continuous speech recognition

A semi-continuous hidden Markov model based on the multiple vector quantization codebooks is used here for large-vocabulary speaker-independent continuous speech recognition. In the techniques employed here, the semi-continuous output probability density function for each codebook is represented by a combination of the corresponding discrete output probabilities of the hidden Markov model and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996